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How will we understand the brain? To start, we must observe the brain's dynamic activity,
which consists of rich patterns propagating across the brain’s spatial and temporal scales,
within the context of the brain's complex anatomy. A fundamental component of the BRAIN
Initiative is the development of new technologies. Here we present suggestions for new
technologies in simulation and mathematical modeling — spanning spatial scales from
molecules to large neuronal populations — leveraging the strengths of the Multiscale Modeling
(MSM) community.

Although statistical approaches and data mining are critical to understanding the brain, these
representations typically lack a mechanistic, biological interpretation of brain function, and do
not directly connect phenomenology across scales. To understand the brain’s multiscale
activity will require combined approaches, linking physical and conceptual reasoning - i.e.,
computational experiments - directly to neuronal data, whether raw or processed - and ideally
both. Although new technologies continue to facilitate the collection of novel brain data, we
will never completely observe all features of the brain’s dynamics. An important role for MSM
is to provide insight into the hidden biological mechanisms underlying the brain’s activity that
are not directly observed. This becomes critical in: 1. Connecting spatial and temporal
scales where information gathered with different techniques is initially incommensurable; 2.
Identifying gaps in datasets where critical parameters have not yet been gathered; 3. Making
explicit predictions that not only test the adequacy of the model but also test the adequacy
of the underlying data in providing explanations for an emergent brain phenomenon of
interest, e.g., dynamical, informational, behavioral, or cognitive.

The following new technologies are needed in simulation and mathematical analysis:

1. Directed high-dimensional nonlinear dynamical analysis methods. Detailed biological
models necessarily reside in high-dimensional state space. However, methods for model
analysis generally require dimensional reduction to 2 or perhaps 3 dimensions; in these
dimensions, important dynamical system features (e.g., manifolds of fixed points and limit
cycles, and their stability) can be visualized. Computer simulations allow us to "see" all state
variables simultaneously in high-dimensional space (e.g., thousands or millions of state
variables). Rather than projecting these dynamics down to convenient dimensions for visual
inspection (a data-mining dimensional reduction), we need to further develop mathematical
tools that permit both a wide angle, global perspective of the full system space, and high
resolution, focused perspectives on individual system components. A goal is to bring our
“virtual eyes” - our manipulations and our evaluation process - into the system’s native space.
In this context, large scale pattern analysis tools that have been successful in the so called
‘omics’ studies could be adapted for analyzing high dimensional simulation data.



2. Development of new measures to assess fundamental features in large nonlinear
systems. Characterization of a nonlinear system often requires determination of important
features such as stability, identification of manifolds and dimensionality, analysis of sensitivity
and robustness to perturbations, and detection of stable and unstable orbits. We require
comparable methods for large nonlinear systems, and for dynamics based on mixed systems
(e.g., systems consisting of ordinary differential equations, combined with delay differential
equations, combined with partial differential equations, combined with event-driven effects).
Of relevance to this, we need to define functionally relevant large-scale input/perturbation
patterns that could be used to evaluate new measures of stability and robustness in realistic
contexts and would be useful in predicting results of new experiments. The cellular activity
and molecular phenotyping data from the BRAIN Initiative could provide initial estimates of
these high-dimensional input patterns.

3. New simulation methods for multiscale models. Simultaneous simulation of activity at
different spatial, temporal and abstraction scales requires different techniques that must be
made to work together. For example, at the subcellular scale this requires different stochastic
simulators to couple with 1D and 3D diffusion, as well as with reaction schemes defined
deterministically or stochastically. At the neuronal network level, this requires hybrid
simulations that combine detailed multi-compartmental cells with more basic
integrate-and-fire cells. At even larger spatial scales, this requires methods for connecting
neuronal networks to simulate brain areas, connecting brain areas to simulate systems, and
finally connecting systems to simulate full-brain models. How to connect these models across
scales - from the subcellular to the full-brain - and integrate additional features (e.g.,
neurovascular coupling) remains a challenge.

4. Extend multiscale models up to behavior and representations Current multiscale
methods focus largely on bottom-up structural constraints. Explicit top-down models of
behaviors are expressed by engineers in control-theory simulations that describe movements,
and by linguists and cognitive scientists in a variety of symbolic representations and symbol
sequencers. It would be desirable to identify explicit correspondences between
phenomenological top-down models and high-dimensional bottom-up models. An ideal would
be to then incorporate the phenomenological model as the top scale of a multiscale model.

5. Develop methods to link data and models. Most computational models possess a large
number of parameters, which typically remain experimentally unconstrained. A common
procedure for estimating these parameters is “hand-tuning” to produce simulated model
dynamics that match qualitatively the desired neuronal activity. Hand-tuning approaches
usually require a great deal of time and expertise. Moreover, once a set of suitable
parameters is found, it is often unclear whether the solution is unique or whether other model
formulations compatible with the data exist. New techniques that go beyond hand-tuning, and
instead rigorously estimate model features from neuronal data are required.

6. Simulator interoperability. Multiple simulators have been moving towards each other by



virtue of all adopting Python as a lingua franca. However, many difficulties remain in
developing reliable interfaces between complex simulators. Standard interfacing must be
developed via application programming interfaces (APIs) that define what information needs
to be sent from one simulator to the other, both within and between spatial scales and scales
of abstraction. This must be done in the context of High Performance Computers (HPCs),
which place different segments of a simulation on different processors.

7. Development of databases for data and model sharing. Accessible, shared resources
need to be developed at multiple levels. Databases should be defined both to suit the needs
of experimentalists and data sharing, as well as to work readily with current and future
simulators. A good example of the difficulties of this can be seen in existing anatomical
databases, which have largely been developed for visualization by neuroanatomists but are
often unfriendly for direct automated access by a simulator trying to extract needed
information. Moreover, as computational models become increasing complex, continuing
efforts are required to develop collaborative and community-driven platforms that support
model verification.

8. Continuous co-system data-mining. Increased automation will support continuous data
from two processes: Ongoing (computer-directed automated) experiments will be
accompanied by ongoing model simulations, with both being probed through ongoing
continuous data-mining. This integrated process can be effected at at least four levels of
complexity.

Level 1: Data-miner detects faults or errors in the experiment or in a companion simulation.
Level 2: Data-miner identifies activity of interest in either set; they then perform more detailed
post-simulation comparisons between model and experimental results, identifying additional
similarities, model features, or experimental features.

Level 3: Co-adaptation: 3a: Simulations are updated based on parameters just now inferred
from experiment. 3b: Based on knowledge of the model, an automated experimental
apparatus is redirected to obtain new parameters, different locations or different aspects of a
parameter being measured in an optimally informative way.

Level 4. Simulations automatically adapt to more closely match data via newly developed
inductive or selective algorithms. Ideally these algorithms will closely mirror actual biological
processes so that the system is modeling development and learning as well as modeling
dynamics.



